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SUMMARY

A domain decomposition strategy and a parallel gradient-type iterative solution scheme have been
developed and implemented for the computation of complex three-dimensional viscous flow problems
involving heat transfer and surface tension effects. Special attention has been paid to the kernels for the
computationally intensive matrix–vector products and dot products, to memory management, and to
overlapping communication and computation. Details of these implementation issues are described
together with associated performance and scalability studies. Representative Rayleigh–Bénard and
microgravity Marangoni flow calculations and performance results on the Cray T3D and T3E are
presented. Performance studies have been recently carried out and sustained rates above 50 gigaflops and
100 gigaflops have been achieved on the 512-node T3E-600 and 1024-node T3E-900 configurations
respectively. The work is currently being extended to tightly-coupled parallel ‘Beowulf-type’ PC clusters
and some preliminary performance results on this platform are presented. Copyright © 1999 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Coupled three-dimensional viscous flow and heat transfer computations are of great interest in
studying many manufacturing processes and natural phenomena [1]. Familiar examples include
hot forming and welding in manufacturing and the motion of the earth’s molten core.
Typically, buoyancy is a dominant component in driving this type of flow and there have been
many studies of buoyancy-driven flows, such as the Rayleigh–Bénard problem [2,3]. These
have been motivated in part by the early experimental studies of Bénard on the cell structures
observed in thin liquid layers heated from below. While the essential physics of this particular
problem was misunderstood for decades, it is now recognized that surface tension effects
associated with temperature gradients on the free surface actually provide the dominant force
driving the flow [4–11]. Accordingly, these flows are now termed Rayleigh–Bénard–
Marangoni (R–B–M) problems and their study is particularly important for fluids in
microgravity environments, such as the space station, and for terrestrial applications involving
thin fluid layers, such as industrial coating processes [12,13]. In both of these scenarios, the
surface tension (thermocapillary effect) is dominant and strongly influences the structure of the
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flow. For example, in recent terrestrial flow experiments on thin liquid layers, new non-linear
instabilities that lead to significant surface deformation and the formation of ‘dry spots’ have
been observed (M.F. Schatz, S.J. Vanhook, W.D. McCormick, J.B. Swift and H.L. Swinney,
‘Instability and transition to disorder in surface-tension driven Bénard convection’, submitted).

The main objective in the present work is to develop effective parallel algorithms and a
distributed parallel implementation capable of high-resolution three-dimensional coupled flow
and heat transfer computations, including surface tension effects. This will permit fundamental
phenomenological flow studies at the grid resolution necessary to represent the fine-scale
surface-driven phenomena to be made and the associated non-linear free surface behavior to
be studied. The discretization involves three-dimensional isoparametric ‘quadrilateral brick’
finite elements with triquadratic velocity, trilinear pressure and triquadratic temperature
approximation on the elements. A non-overlapping domain decomposition of the grid is
generated with processor interfaces coincident with a subset of element surfaces. This implies
that nodes on the subdomain interfaces are shared by adjacent processors [14,15].

In previous work by the authors [16], the main algorithm employed a decoupled repeated
block iteration between the viscous flow and heat transfer computations for stationary or
transient flow and transport computations. Each of these main simulation steps was solved by
iterative linearization and the linear subsystems in turn were solved by biconjugate gradient
iteration with diagonal preconditioning. The new work is based on a fully-coupled formulation
for velocity, pressure and temperature. This implies that a larger fully-coupled linear system
must be solved at each non-linear iteration within a given time step. The basic approach
involves parallelization of the computationally intensive matrix–vector products and dot
products of the generalized gradient solvers across a partition to subdomains. The subdomain
contributions are not assembled and instead the calculations are carried out using an
element-by-element approach as before, but this now involves a larger coupled element matrix.
Both the decoupled and fully-coupled schemes will be considered here. Special care is taken to
ensure efficient processor computation of the computationally intensive matrix–vector product
kernels and to overlap communication and computation for elements adjacent to the processor
subdomain boundaries. Performance studies of the decoupled scheme on 512 nodes of a Cray
T3D at NASA Goddard were verified in March 1997 at a sustained rate in excess of 16
gigaflops. More recent performance studies on the Cray T3E-600 and T3E-900 have run at
sustained rates above 50 gigaflops and 100 gigaflops on 512 and 1024 processors respectively.

In the next two sections, the problem formulation and then the BCG kernel are briefly
summarized. Then in Section 4, basic domain decomposition and element-by-element strategy
within subdomains are given, and the main ideas of the parallel implementation are presented.
Then, scaled speed-up studies for representative Rayleigh–Bénard–Marangoni calculations are
provided. Finally, in the concluding remarks, work in progress on a very large distributed
system for complex applications is indicated.

2. FORMULATION

The transient flow of a viscous incompressible fluid as described by the Navier–Stokes
equations coupled to the transport of heat by conduction and convection in the fluid is
considered. Buoyancy is included by means of the Boussinesq approximation as a temperature-
dependent body force term in the momentum equations and the velocity field enters the
convective term in the heat transfer (energy) equation. The effect of thermocapillary surface
tension enters as an applied shear stress which is also dependent on the surface temperature
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gradient. The Navier–Stokes equations for viscous flow of an incompressible fluid may be
written

r
�(u
(t

+u ·9u
�

+9 ·t= f+b(T−T*)g, (1)

9 ·u=0, (2)

in flow domain V, where u is the velocity field, t is the stress tensor and is specified by Stokes
hypothesis for a Newtonian fluid, f is an applied body force, g is the gravity vector, T* is the
reference external temperature, T is the fluid temperature and b is the thermal coefficient. At
the solid wall boundaries, the no-slip condition applies so u=uw, where uw, is the specified wall
boundary velocity.

At the free surface, a shear stress due to thermocapillary surface tension acts. For example,
on a horizontal free surface, the tangential shear stress component tzx is given by
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with a similar expression for tzy, where g(T) is the surface tension and T is temperature. The
heat equation is

rcp
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where k is the thermal conductivity of the fluid, r is the density, cp is the heat capacity and Q
is a heat source term. Temperature, flux or mixed thermal boundary conditions may be
applied. For example, in the R–B–M test problem later, temperature is specified as T=Tb on
the base, zero normal flux k((T/(n)=0 on the side walls, and mixed conditions k((T/(n)=
a(T−T*) (Robin) on the free surface, where T* is the exterior temperature and a is the heat
transfer coefficient for the medium. Then (1), (2) and (4) constitute a coupled system to be
solved for velocity, pressure and temperature.

Introducing test functions 7 and q in a weighted-residual statement for (1) and (2),
integrating by parts using (3) and introducing the Stokes hypothesis, we obtain the weak
variational statement: find the pair (u, p)�V×Q with u=uw at the wall boundaries and such
that &
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hold for all admissible (7, q). Similarly, the weighted integral for (4) yields: find T�W
satisfying any specified (essential) temperature boundary conditions and such that&
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for all admissible test functions w with w=0 on those parts of the boundary where T is
specified.
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The finite element formulation for (5)–(7) follows immediately on introducing the approxi-
mation subspaces Vh, Qh, Wh for V, Q and W respectively to obtain: find (uh, ph, Th) with uh

and Th satisfying the essential boundary conditions and initial conditions and such that&
V
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hold for all admissible 7h, qh and wh, with 7h=0 and wh=0 on those parts of the boundary
where u and T are specified respectively. Now (8)–(10), define the coupled finite element
problem to be solved.

Introducing the discretization of elements and the finite element basis functions, the
respective velocity, pressure and temperature expansions are

uh
k(x, t)= %

n

i=1

uj
k(t)fj(x),

Th(x, t)= %
n

j=1

Tj(t)fj(x), (11)

ph(x, t)= %
n

j=1

pj(t)fj(x),

where k is the velocity component index (k=1, 2, 3 for three-dimensional flow) and uj
k, pj, Tj

are the nodal values. Substituting into (8)–(10) and writing in matrix form we have a
semi-discrete finite element system of the form

M
dU
dt

+s(U)+nAU+Bp=F+b(T), (12)

BTU=0, (13)

M
dT
dt

+KT+CT=Q. (14)

A variety of integration schemes are applicable to advance the solution from a specified
initial state U(0), T(0). In the present work, a standard u method is used, with 05u51, so
that at time step (tn, tn+1):

M(Un+1−Un)
Dt

+u [nAUn+1+s(Un+1)+Bpn+1]+ (1−u)[nAUn+s(Un)+Bpn]

=uGn+1+ (1−u)Gn, (15)

BTUn+1=0, (16)
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M(Tn+1−Tn)
Dt

+u [KTn+1+Cn+1Tn+1]+ (1−u)[KTn+CnTn]=uQn+1+ (1−u)Qn,

(17)
where s is evaluated using the current velocity iterate and G=F+b(T). Here u=0, 1/2, 1
correspond respectively to the familiar forward, mid-step and backward Euler integrators. In
the results shown later we employ the mid-step u=1/2 scheme. Hence, a fully-coupled linear
system in parallel must be solved for each iterate within a given time step.

The decoupled transient scheme proceeds by ‘lagging’ the temperature in the momentum
equations (15), (16) to enable the decoupling within each time step. Then, using the resulting
velocity field, C is computed and (17) is solved for the temperature iterate. These two solve
steps can be repeated until the convergence criterion is met for the time step. The procedure
is then repeated for the next time step. In the next section, the BCG algorithm for the kernel
system solves is given.

3. BCG KERNEL

It can be seen that both the coupled and decoupled algorithms require repeated system solves
within each time step. These systems are sparse and non-symmetric, but the asymmetry in the
R–B–M microgravity problem is not strong. This implies that iterative methods with Jacobi
preconditioning should be quite effective in solving each linear subsystem. In the present work,
the respective systems are solved in parallel over subdomains using biconjugate gradient
iteration (BCG) with diagonal preconditioning.

Consider such a non-symmetric system

Au= f. (18)

Then the basic BCG scheme applied here proceeds as follows.

Algorithm

1. Initialization
Set preconditioner Q
Compute f=
(fTf)
Set iteration counter n=0

Restart:
Compute initial residual rn= f−Aun

Set r̄n=rn

Apply preconditioning by solving Qzn=rn and Qz̄n= r̄n for zn and z̄n

Compute rn=
zn
Trn and check for convergence

Compute rn=zn
Tr̄n ; set pn+1=zn and p̄n+1= z̄n

Change f to be rn if 
fTf is small
Set n=n+1 to update counter inside Restart

2. Iteration:
For k=n, n+1, . . . iterMax

set n=n+1
Compute wk=Apk, w̄k=ATp̄k

Compute sk= p̄k
Twk and Restart if �sk � is small

Set ak=rk−1/sk
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Update uk=uk−1+akpk

Update rk=rk−1−akwk

Apply preconditioning by solving Qzk=rk for zk

Compute rk=
(zk
Trk)

Stopping test, if converged then break loop
Update r̄k= r̄k−1−akw̄k

Apply preconditioning by solving Qz̄k= r̄k for z̄k

Compute rk=zk
Tr̄k

Restart if �rk−1� is small
Set bk=rk/rk−1

Compute pk+1=bkpk+zk, p̄k+1=bkp̄k+z̄k

Note that all the dot products when done in parallel require a mask that is described in the
next section. Also, when either �sk � or �rk−1� is small the program returns to the Restart
label, recomputes the residual and continues from there as before. The reason that counter
n was added is that it prevents the code from looping forever.

The main computational steps in this solution algorithm are matrix–vector products,
transpose matrix–vector products and vector dot products. Since the matrices are sparse
(because of the local support of the element bases) fast parallel sparse matrix–vector product
(MATVEC) routines are required, and also a fast parallel dot product routine. Frequently,
in the parallel iterative literature, the MATVEC is left to the user to provide but this is the
‘heart’ of the calculation and must be handled efficiently if a fast scalable parallel solver is
to be designed. The parallel MATVEC and the dot product routines are elaborated on in the
next section.

4. DOMAIN DECOMPOSITION

This study uses a non-overlapping decomposition by elements. This implies that the processor
interfaces coincide with a subset of element faces and the nodes on those faces are shared
by adjacent processors. This is natural in a finite element framework since it implies that the
element calculations can be parallelized easily over the processor partition and also lends itself
to element-by-element solution strategies by either iterative schemes [17,18] or frontal elimi-
nation within each subdomain (e.g. see A. Bose, V.F. de Almeida and G.F. Carey, ‘A class
of multiple front algorithms on subdomains’, in preparation, 1999) for a parallel element-by-
element multi-front scheme).

A subdomain element-by-element approach (in which each subdomain contains a sufficient
number of elements) provides an efficient parallel strategy. Here the dense matrix operations
at the element level can be exploited in the intensive computational kernels and the commu-
nication at the processor interface nodes can be overlapped with computation in the interior
of each subdomain.

Consider a typical interior subdomain Vs containing elements we
s, e=1, 2, . . . , Es and let

Bj
s, j=1, 2, . . . , J denote those border elements of Vs that are adjacent to the subdomain

boundary (Vs. Let Ik
s , k=1, 2, . . . , K denote the remaining elements interior to the subdo-

main. Computations involving this interior subset are local to the processor. This implies that
communication requests can be initiated for the subdomain border element calculations while
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computation begins on the interior subset. Then the border element computations can be
completed. Provided there are sufficient elements in the interior subset this strategy will permit
complete communication overlap.

For simplicity, consider an interior cube subdomain. There are six surface subdomain
neighbors, 12 edge subdomain neighbors (that are not also surface neighbors) and eight further
vertex neighbors. Hence, there are 26 subdomain neighbors involved in message passing to or
from any given interior subdomain cube. For subdomain interface nodes of the border
elements, the face-interior nodes are duplicated twice, once on each neighboring processor,
edge-interior nodes are duplicated four times and corner nodes are duplicated eight times. This
has some bearing on the way we compute the global dot products in the algorithm. More
specifically, a ‘masked’ dot product is computed with masking weight, vi for node i. Here vi

is the reciprocal of the number of subdomains sharing node i. e.g. vi=1 for subdomain
interior node i, vi=

1
2 for face-interior node, etc.

The element matrix calculations are trivially parallelized over the processor subdomains and
the subdomain matrix–vector product can be conceptually separated as follows:

For elements e in the border:
Compute EBE matrix–vector product.
Sum element result into nodal result vector.

Extract interface nodal MVP results to send buffers and transfer to neighbor processors.
For elements e in the interior:

Compute EBE matrix–vector product.
Sum element result into nodal result vector.

Sum receive buffer data for neighboring processors into nodal MVP result vector.

5. COMMUNICATION STRATEGY

A combination of MPI and SHMEM is used to handle the communications for the T3E.
SHMEM is used where speed is important, but SHMEM is less portable. For example, global
operations with SHMEM require a buffer at the same address on all processors. Hence, for
operations like dot products, only one global location is needed and SHMEM is used.
Operations that require broadcasting buffers of unknown size are more difficult and MPI is
used here.

The basic approach is as follows. First, the input file needs to be read by the processors.
Since the bandwidth speed of the network is much faster than reading from disk, it is better
to make a single read and then broadcast rather than have each processor read the input file
from disk. Accordingly, in the present approach, processor zero reads the input file a line at
a time and simultaneously broadcasts each line to all other processors. This step is imple-
mented using MPI.

When the global mesh is partitioned across processors the ‘send list’ of nodes is also set up.
These are nodes on the subdomain boundaries and hence are shared by neighboring proces-
sors. One approach would be to set up a translation table to relate global and local node
numbers for these shared nodes on neighboring processors. Instead this is done implicitly by
setting up local and global numbering systems as described in Section 4. Then each processor
has a send list that puts values on the send buffer and reads from the receive buffer in the same
order. For example, if a value for the third node (in the buffer) sent between neighboring
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processors p and q corresponds to local node 12 on processor p and local node 124 on
processor q then this local identification between processors is maintained. This implicit
equivalence of local node values avoids sending global node numbers but complicates forming
send lists. However, this step is required only once for the static processor partitions used here.
Since the implementation is restricted to structured meshes, the send list can be constructed on
each processor by tracing each face in the same direction.

Communication is required in the solution algorithm for global operations, such as dot
products, other global sums and maximum value calculations. For example, consider a typical
global dot product computation in the gradient iterative solution algorithm (Section 3). We
need to make local computations in parallel, communicate these results and accumulate the
global sum. Since nodes on subdomain boundaries are shared, there are duplicated values and
the local dot products have to be weighted appropriately. These weighted or ‘masked’ local dot
products are computed in parallel as described previously (Section 4) and the local scale-up
results are accumulated to the correct global sum. This latter step is carried out using the
routine: shmem–double–sum–to–all.

Neighbor-to-neighbor communications are also required, most notably in the matrix–vector
product computations. Specifically, the result of a global matrix–vector product is a global
vector. Nodes on a subdomain boundary are shared by adjacent processors and the local
contributions to these nodes must be accumulated and shared as described in Section 4.
Accordingly, we first initiate computations on the subdomain ‘boundary strips’ and communi-
cate these values to the neighboring processors using SHMEM. During this communication
step, the local matrix–vector contributions on the remaining interior elements of each
subdomain are carried out. A barrier is inserted at the end of this interior computation so that
calculation can not proceed until remaining communication (if any) is completed. The
communicated border values are then accumulated into the local vectors. This results in a
correct local processor extraction of the global vector (with duplication of values for nodes
shared by neighboring processors). We see only a small (approx. 2%) improvement by
overlapping communication with calculation on the T3E but since we use asynchronous
communication it is just as convenient to overlap as not.

6. SOFTWARE DESIGN

The program is designed for fast scalable parallel computation of steady and transient
solutions to coupled incompressible viscous flow with heat and mass transfer. Parallel
efficiency is achieved by careful implementation of MPI and customized communication
software (such as SHMEM on the T3E) using a domain decomposition strategy. Since most of
the computation time is taken solving the associated large sparse systems, a major effort was
devoted to optimizing the solver. Within each time step or Newton iteration, we need to solve
sparse linear non-symmetric systems. Biconjugate gradient (BCG) and conjugate gradient
schemes are implemented in parallel over the partition to subdomains, with an element-by-
element data structure for the subdomain computations. Since there is need to compute
matrix–vector (MATVEC) products repeatedly, special consideration is given to this compo-
nent [19]. For the triquadratic velocity, trilinear pressure, triquadratic temperature bases, the
element matrix for the coupled formulation is of size greater than 100×100 and relatively
dense (few zero entries). This large element matrix size implies that the subdomain matrix–
vector products can be computed efficiently element-by-element. More specifically, assembly
coded BLAS matrix–vector product routines (SGEMV or DGEMV) are used for element
matrix–vector products and the resulting subdomain vectors are assembled.
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MGFLO is designed for unstructured mesh finite element simulations on irregular parti-
tions, such as those generated by Chaco [20] or Metis [21]. This flexibility is facilitated by
means of lists in C. Each processor has a set of elements that is further broken down to (1)
‘frame’ elements, which have a face, edge or corner shared with elements residing on another
processor and (2) the remaining ‘interior’ elements on the processor. Accordingly, three lists of
pointers are used—one list is to all elements of the processor and the other two to the
respective frame and interior elements. Note that elements are only stored once but there are
two pointers to each element. To process elements, simply loop over the appropriate list (all
elements, frame elements or interior elements). We remark that essential boundary conditions
are stored nodally, whereas flux data is stored by elements. Communication between proces-
sors is implemented using a list of nodes that are shared by each processor.

In the numerical studies presented later, only structured subdomains are considered, and a
simple mesh generator that can be partitioned regularly is used. That is, the mesh routine
knows that it has a structured mesh to create and partition. It also creates the three element
lists and the list of nodes that need to be exchanged between processors. (For more general
partitionings and grids one must set up the communication node lists accordingly).

The input files are described by a simple mini-language so that the code acts on them as an
interpreter. The program has no ordered script of tasks. After reading in the data set, it
performs the steps in the order that the user requests them. This provides great flexibility in
how the code gets used. Simple things like checking the mesh without running the solver are
easy: just do not request the solver to be run. Obviously, this also requires a more sophisticated
user because the commands must be placed in an appropriate order. (Requesting the code to
solve a problem before the mesh and material properties are given is possible but wrong.)

The operational statements of the code are written in C but the actual programming style
and implementation is carried out using a higher-level ‘literate’ programming tool called
‘noweb’ [22,23]. This has two main features: (1) it permits direct in-line documentation of the
code using LATEX so that to a significant degree, the code can be internally documented (with
glossary, index and cross-referencing) and this encourages good programming practice; (2) it
encourages a structured programming style that has some of the attributes of object-oriented
programming independent of the operational language (C or FORTRAN, etc.). The basic
approach to coding can then be described as follows.

Each section of code can have a documentation section (a text chunk) which is written in
LATEX followed by a computer code section (a code chunk). The pairs of chunks can be
combined in an order to suit a human reader. This combined file can be processed two ways.
The first way extracts the computer code in an order suitable for a compiler. This is called
tangling. The second way (called weaving) produces a human readable document.

The layout for a noweb program is to specify a text chunk by starting a line with @ symbol
followed by a new line. The code chunk begins with a ��chunk name��= on a line by itself.
Chunks are terminated implicitly by the beginning of a new chunk or the end of the file. Code
chunks can refer to other code chunks. This nesting of code chunks can be as deep as
necessary.

A simple example may clarify how this works. By default, all noweb files start expanding
from the ����� chunk. So a simple C program that calls a routine, vecAXPBY that computes
y=ax+by is given below.

�����=
��Headers ��
��Vector a x+b y ��
void main ( )
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{
��Initialize arrays ��
vecAXPBY(n, alpha, x, beta, y);

}
@
��Initialize arrays ��=
int n=10;
int j;
float alpha=1.23, beta=3.14;
float x[10], y[10];
for (j=0; j Bn; j++) {

x[j]=2.0 �j; y[j]=3.0 �j;
}

@
��Vector a x=b y��=
void vecAXPBY(int n, float alpha, float �x, float beta, float �y)
{

int ja;

��Compute a x=b y��
}
@
��Compute a x=b y��=
c if (defined( – CRAYMPP))

int Iskip=1;
SAXPBY(&n, &alpha, x, &Iskip, &beta, y, &Iskip);

celse
for(ja=0; ja Bn; ja++)

y[ja]=alpha �x[ja]=beta �y[ja];
cendif

@
��Headers ��=
c include �stdio.h �

would expand to

c include �stdio.h �
void vecAXPBY(int n, float alpha, float �x, float beta, float �y)
{

int ja;

c if (defined( – CRAYMPP))
int Iskip=1;
SAXPBY(&n, &alpha, x, &Iskip, &beta, y, &Iskip);

celse
for(ja=0; ja Bn; ja++)

y[ja]=alpha �x[ja]=beta �y[ja];
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cendif
}

void main( )
{

int n=10;
int j;
float alpha=1.23, beta=3.14;
float x[10], y[10];
for (j=0; j Bn; j++) {

x[j]=2.0 �j; y[j]=3.0 �j;
}
vecAXPBY(n, alpha, x, beta, y);

}

This example shows how chunks like ��Initialize arrays �� and ��Compute ax+
by�� are expanded in to code. The chunk ��Compute ax +by�� also shows how noweb can
hide conditional compilation statements from the main algorithm. Furthermore, it is in large
programs developed by one or more analysts that the benefits of tools like noweb become
evident.

Combining the documentation with the code is certainly an important aspect. This means
that the documentation and the code are less likely to be out of date with each other. Also,
having access to features of LATEX, such as the mathematical equations and ability to add
figures, or formatted tables greatly improve the documentation. Such programs now have a
table of contents and an index that facilitate understanding and debugging.

The ability to collapse entire algorithms to a single page listing key steps that include
mathematical expressions is of great value and makes the code easily understood by software
team developers. For example, the major loop over Gauss points for generating the matrices
can be expressed succinctly as:

/ � Loop over Gauss points �/
for (igp=0; igp Bgp3d; igp++)

{

�Compute x, y, z,
(x
(j

,
(x
(h

,
(x
(z

at gp �

�Compute the Jacobian at gp �

�Compute
(F
(x

,
(F
(y

,
(F
(z

at gp �

�Compute Soln and derivs
(T
(x

,
(U
(x

,
(V
(x

at gp �

�Compute old Velocity and Temperature at gp �
�Compute Material Properties at gp �
�Compute Mass Matrix if TRANSIENT �
�Compute Steady State matrices and rhs �

}

One might argue that subroutines provide a similar benefit, since routines could be called
instead of chunks. In theory this is true, but very long descriptive routine names are almost
never used, and it is not possible to use mathematical symbols for subroutine names. More

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 37–52 (1999)



G.F. CAREY ET AL.48

importantly, any given routine will also be made of up of steps that can be broken up into
chunks. Replacing all chunks by subroutines would also add the overhead involved in calling
the routine. Also local variables that can be shared directly between chunks could not be
shared directly between subroutines unless they are passed through on the argument lists or
declared as global variables. This could force very long argument lists between routines, which
would hinder understanding the code. We remark that the use of these techniques imposes no
execution overhead and can be added to any computer language. It is clear that all these ideas
can be used in straight Fortran or C code, but combining these languages with a tool like
noweb makes all programming much easier.

7. BEOWULF-TYPE CLUSTERS

A Beowulf-type cluster comprised of 16 Intel Pentium II processors has been recently
assembled by the authors for the investigation of parallel computing on workstation clusters.
Each node is equipped with a single Pentium II processor with 128 MB of RAM. The
processors are interconnected with a cross-bar hub running 100 MBit Fast Ethernet (see Figure
1). With the goal of optimizing our MPI-based flow analysis software to run efficiently in
parallel on this cluster, we are currently studying communication performance. Owing to the
fact that these workstations are part of a cluster built from commodity parts, we do not have
a customized communications controller and high-speed proprietary network, such as those
available on modern supercomputers like the T3E. However, a large cluster with myrianet
switching has been assembled at TICAM and we are beginning to carry out performance
benchmark tests. It is, therefore, necessary to develop an understanding of the network
available to our cluster in order to determine the best way to optimize communication
performance. To this end, we have also developed and are continuing to develop an
MPI-based communication performance test code. The communications test code starts up
MPI and sends a series of point-to-point messages between all processors. The messages sent
in this study are of a fixed size supplied by the user. The code then performs a number of
realizations of these point-to-point messages, from which we can compile statistical informa-
tion about the underlying network.

Concurrently with this network performance study, the flow analysis program with MPI has
been implemented for this architecture and preliminary performance studies have been carried

Figure 1. Beowulf cluster network topology.
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Figure 2. Parallel speed-up scaling on the Beowulf cluster.

out. Figure 2 shows the results of a scaled speed-up study on the Beowulf cluster. Four cases
were examined in this study: coupled and decoupled flow and heat transfer with non-optimized
FORTRAN-coded BLAS and coupled and decoupled flow and heat transfer with Pentium II
optimized assembly coded BLAS. In both cases, the results show almost linear scaling for both
coupled and decoupled flow regimes, with the variation from linearity due to system software
running in the background.

Plate 1 shows results for natural convection in the unit cube run with the code on eight
nodes of this cluster. In this study with non-dimensional variables, the bottom and two of
the side walls are insulated, the near wall is held at T=1, and the far wall is held at T=0.
All of these walls are no-slip. The top is a free surface with thermocapillary surface tension
and a mixed heat transfer boundary condition (h=1, Tref=1, Rayleigh number=2200).
The simulation was made using a 10×10×10 mesh in a 2×2×2 Cartesian partition to
subdomains (each subdomain is then 5×5×5) with parallel block-Jacobi preconditioning.
The tolerance for the non-linear Newton iteration was 10−11 with a maximum of 50 Newton
iterations per non-linear solve. The maximum number of conjugate gradient iterations per

Figure 3. Parallel speed-up scaling on the T3E-600.
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linear subsystem solve is 3000 with a relative residual tolerance of 10−6 for convergence.
Shown in the figure are ‘stream-ribbons’ to illustrate the computed flow field behavior and
base and side-wall temperature contours. The computation required 8 h for steady state
solution.

8. T3E THERMOCAPILLARY STUDIES

A series of parallel performance studies for the Cray T3E-600 were first conducted for a
representative R–B–M problem using both the fully-coupled and decoupled formulations.
Parallel speed-up scaling showing sustained gigaflops versus number of processors is shown in
Figure 3. A similar study was undertaken later for scaling through 1024 processors on the
T3E-900, as shown in Figure 4, and delivers a maximum of approximately 118 gigaflops. Both
figures are obviously for scaled problem size (the subgrid size per processor is fixed and
sufficiently large).

The results of two case studies carried out on the Cray T3E are presented. In the first
problem, the fluid flow in an L×L×L/4 domain is considered, driven by an axisymmetric
Gaussian heat flux distribution given by q=exp(−50((x−0.5)2+ (y−0.5)2)) and dg/dT=
−5 N m−1K−1 on the top surface of the domain. Here L=1 m is taken as the reference
length of the problem. On the other faces of the domain, Dirichlet boundary conditions are
applied (i.e. zero velocity, reference temperature T=10°C). The Prandtl number is 0.3 and we
simulate the flow under low gravity (g=0.01 m s−2) on a 16×16×8 mesh with an 8×8×4
processor partitioning. The Rayleigh and Marangoni numbers are 761 and 43.25 respectively.
The flow pattern and temperature distribution on the top surface and on the mid vertical
(y=0.5 m) plane are given in Plates 2 and 3.

In the second problem, the fluid flow and heat transfer in an L×L×L/2 domain on a
12×12×6 mesh with a 4×4×2 processor partitioning are simulated. Here, the reference
length L is 1 as before. The flow is subject to a mixed thermal boundary condition (q=T−1)
on the free surface. Side-walls and base have no-slip boundary conditions as before. The
temperature on two adjacent side-walls is 0 and on the remaining side-walls T=1. The other
parameters are: Pr=1, Ra=2200 and Ma=2.5. The temperature distribution on the surface
of the domain is given in Plate 4. In Plate 5, temperature contours and velocity vectors are
shown on various slices of the domain.

Figure 4. Parallel speed-up scaling on the T3E-900.
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9. CONCLUDING REMARKS

Since the development of the transistor 50 years ago, there has been a remarkable expansion
in microelectronics and computing. Scientific computing has been a major beneficiary of the
microelectronics revolution and at the same time has been a catalyst spurring development of
computer hardware, software and algorithms. During the last decade we have seen the
emergence of parallel architectures that exploit the price performance of commodity processor
availability. This has permitted scientists and engineers to address more complex problems
with more complete physical models because larger problems can be addressed in reasonable
computation time. The possibility of ‘building your own parallel computer’ from inexpensive
PCs has also opened other avenues for affordable simulation of larger analysis and design
problems.

The present work is part of a grand challenge HPC study funded by NASA to investigate
scalable parallel coupled viscous flow and heat transfer analysis to explore microgravity and
thermocapillary free surface effects. The basic analysis code is, however, more general and
provides a framework for scalable distributed HPC applications to this class of transport
processes of interest to NASA, industry and elsewhere. The authors have developed a Galerkin
finite element formulation and solution algorithm for both fully coupled and decoupled
strategies with an implementation using noweb and C. Noweb enables the use of alternate
compiler systems and enhances portability of the code (e.g. the ‘same’ code runs MPI only on
the Beowulf system and both MPI and SHMEM on the Cray T3E). The program is also
designed for analysis with unstructured grids and irregular partitions [20,21], this being
achieved through the use of lists.

As the numerical results indicate, the software can be applied to complex three-dimensional
coupled problems and delivers linear near-optimal scaling through 1024 processors on the T3E.
Performance on the small PC cluster is encouraging. There are still some major problems at
the algorithm level that need to be addressed. Foremost among these is the need for better
parallel preconditioners that are robust and dramatically reduce the number of iterations in the
linear system subsolves while not significantly degrading scalability and parallel performance.
This is, of course, a key open problem for most PDE applications. The most appropriate
preconditioning strategies are those based on reduced subdomain (approximate Schur’s
complement) or multilevel approaches [24] and are part of our ongoing studies in this area.
Other future work will be directed to deforming free surfaces, adaptive grids and more
complex non-Newtonian fluids with temperature dependent parameters.
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Plate 1. Natural convection flow result.

Plate 2. Color temperature plot and vector velocity plot on the top surface.

Plate 3. Color temperature plot and vector velocity plot on the section y=0.5.
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Plate 4. Color temperature plot and on the surface of the domain.

Plate 5. Color temperature plot and vector velocity plot on the internal slices in the domain.
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